Image-based finite element modeling of alveolar epithelial cell injury during airway reopening.

نویسندگان

  • H L Dailey
  • L M Ricles
  • H C Yalcin
  • S N Ghadiali
چکیده

The acute respiratory distress syndrome (ARDS) is characterized by fluid accumulation in small pulmonary airways. The reopening of these fluid-filled airways involves the propagation of an air-liquid interface that exerts injurious hydrodynamic stresses on the epithelial cells (EpC) lining the airway walls. Previous experimental studies have demonstrated that these hydrodynamic stresses may cause rupture of the plasma membrane (i.e., cell necrosis) and have postulated that cell morphology plays a role in cell death. However, direct experimental measurement of stress and strain within the cell is intractable, and limited data are available on the mechanical response (i.e., deformation) of the epithelium during airway reopening. The goal of this study is to use image-based finite element models of cell deformation during airway reopening to investigate how cell morphology and mechanics influence the risk of cell injury/necrosis. Confocal microscopy images of EpC in subconfluent and confluent monolayers were used to generate morphologically accurate three-dimensional finite element models. Hydrodynamic stresses on the cells were calculated from boundary element solutions of bubble propagation in a fluid-filled parallel-plate flow channel. Results indicate that for equivalent cell mechanical properties and hydrodynamic load conditions, subconfluent cells develop higher membrane strains than confluent cells. Strain magnitudes were also found to decrease with increasing stiffness of the cell and membrane/cortex region but were most sensitive to changes in the cell's interior stiffness. These models may be useful in identifying pharmacological treatments that mitigate cell injury during airway reopening by altering specific biomechanical properties of the EpC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows.

Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown o...

متن کامل

Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening.

Recent advances in the ventilation of patients with acute respiratory distress syndrome (ARDS), including ventilation at low lung volumes, have resulted in a decreased mortality rate. However, even low-lung volume ventilation may exacerbate lung injury due to the cyclic opening and closing of fluid-occluded airways. Specifically, the hydrodynamic stresses generated during airway reopening may r...

متن کامل

Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening.

Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the...

متن کامل

Influence of cytoskeletal structure and mechanics on epithelial cell injury during cyclic airway reopening.

Although patients with acute respiratory distress syndrome require mechanical ventilation, these ventilators often exacerbate the existing lung injury. For example, the cyclic closure and reopening of fluid-filled airways during ventilation can cause epithelial cell (EpC) necrosis and barrier disruption. Although much work has focused on minimizing the injurious mechanical forces generated duri...

متن کامل

Biomechanics of liquid-epithelium interactions in pulmonary airways.

The delicate structure of the lung epithelium makes it susceptible to surface tension induced injury. For example, the cyclic reopening of collapsed and/or fluid-filled airways during the ventilation of injured lungs generates hydrodynamic forces that further damage the epithelium and exacerbate lung injury. The interactions responsible for epithelial injury during airway reopening are fundamen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2009